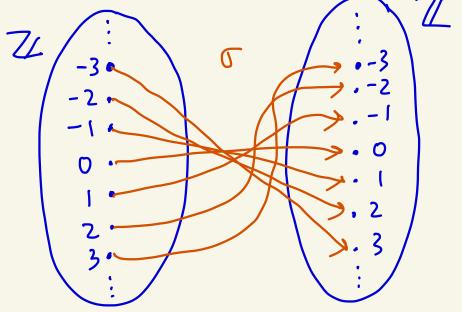
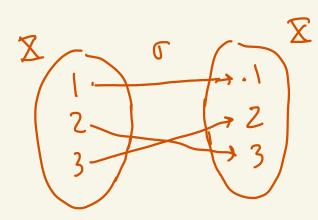
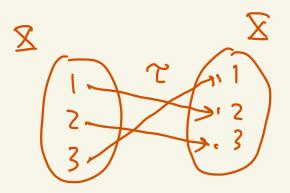
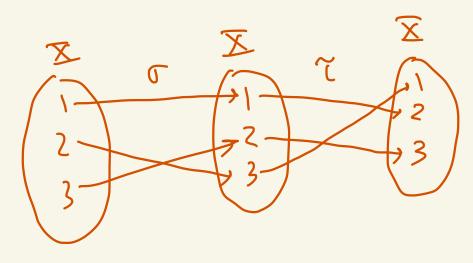

Math 4550 Topic 8 -Symmetric group and Cayley's Theorem

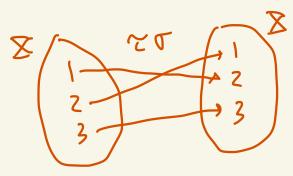

Def: Let X be a non-empty set. A bijection $\sigma: X \rightarrow X$ is called a permutation of X.

 $E_{X}: X = \{1, 2, 3\}$


o is a permu tation of X


 $\underline{\mathsf{Ex}}: \ \underline{\mathsf{X}} = \overline{\mathsf{Z}}, \ \mathbf{\sigma}: \mathbb{Z} \to \mathbb{Z}, \ \mathbf{\sigma}(\mathsf{a}) = -\mathsf{a}$ or is a permutation of Z.

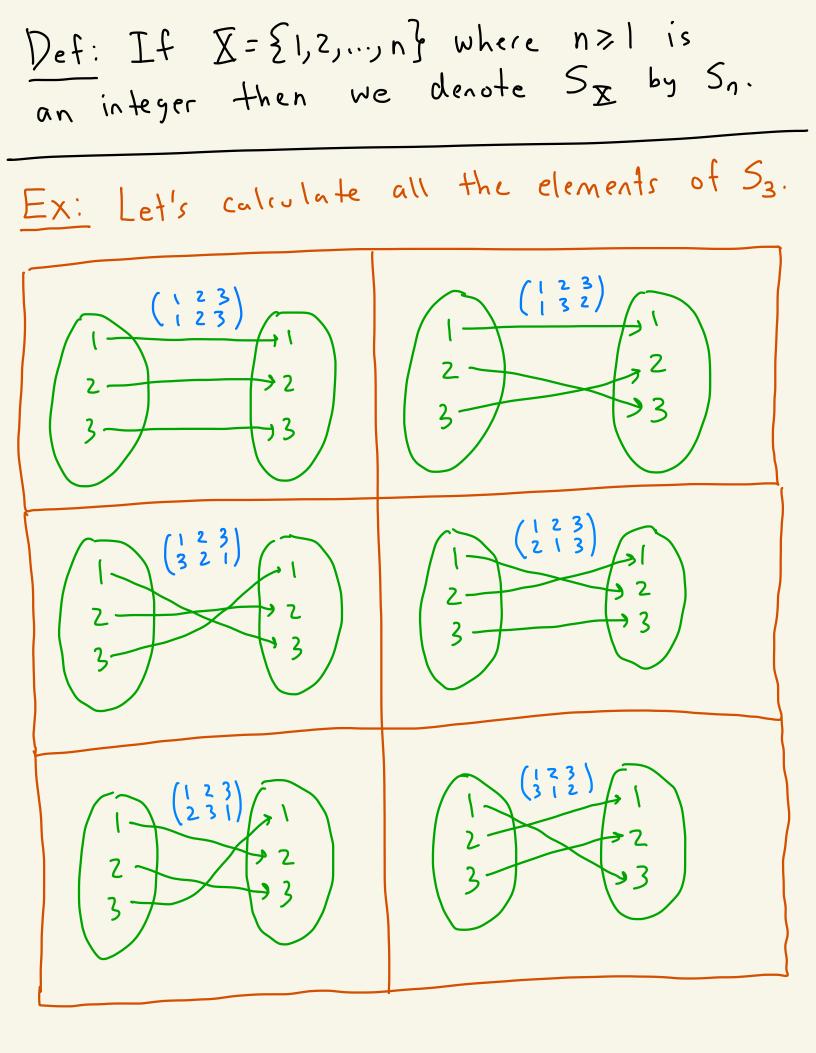



Def: Let X be a non-empty set. Let $S_{\overline{X}}$ be the set of all permutations of \overline{X} Given J, TES& define the operation

 $E_{X}: X = \{1, 2, 3\}$

Theorem: The above operation is well-defined.
proof: Let
$$X$$
 be a non-empty set.
Let $\sigma: X \rightarrow X$ and $\gamma: X \rightarrow X$ be permutations.
We must show that $\sigma \tau$ is a permutation.
claim 1: $\sigma \tau$ is one-to-one
Suppose $\sigma \tau(a) = \sigma \tau(b)$ where $a, b \in X$.
Then $\sigma(\tau(a)) = \sigma(\tau(b))$
Since σ is one-to-one this
implies that $\tau(a) = \tau(b)$.
Since τ is one-to-one this
implies that $\alpha = b$.
Hence $\sigma \tau$ is one-to-one.
claim 2: $\sigma \tau$ is onto-
Let $c \in X$.
Since τ is onto there
exists $b \in X$ with $\sigma(b) = c$.
Since τ is onto there exists
 $a \in X$ with $\tau(a) = b$
Then,
 $(\sigma \tau)(a) = \sigma(\tau(a) = \sigma(b) = c$.
Thus, $\sigma \tau$ is onto

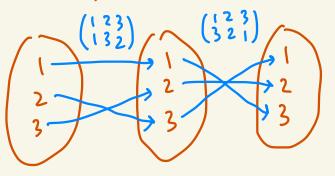
-

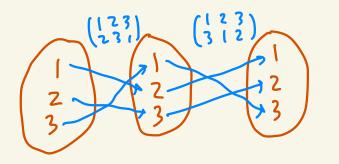

-

. .

Theorem: Let
$$X$$
 be a non-empty set.
Then, S_X is a group using function
composition as the group operation.
Proof:
(Closure) This was proven in the theorem above.
(Closure) (Closure) This was proven in the theorem above.
(C

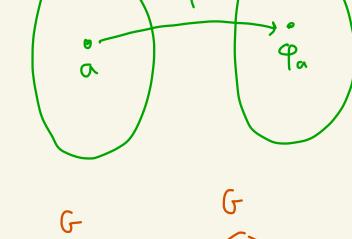
So,
$$i\sigma = \sigma = \sigma i$$
.
(inverses)
Let $\sigma \in S_X$.
Define $\sigma' \in S_X$ by $\sigma'(y) = x$ iff $\sigma(x) = y$.
By Math 2450/3450 this function is
Well-defined.
Given $a \in X$ we have
 $(\sigma \sigma')(a) = \sigma(\sigma'(a)) = a$.
 $(\sigma' \sigma)(a) = \sigma'(\sigma(a)) = a$.
So, σ'' is the inverse of σ in S_X .


Def: For a non-empty set X we call Sx the symmetric group on X.


So,

$$S_{3} = \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \right\}$$
i, the identity

Some example calculations are:



$$\begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$$

identity
these are
inverses

Theorem: (Cayley's Theorem)
Every group is isomorphic to a subgroup
of a symmetric group.
Let G be a group.
Define
$$Y: G \rightarrow S_G$$
 by $Y(a) = P_a$
where $P_a: G \rightarrow G$ by $P_a(x) = ax$.
G S_G

9a

X

ð. ax

First let's show that t is well-defined.
Let
$$a \in G$$
.
Claim: $T(a) = P_a$ is an element of S_G
Pf of claim:
First we show P_a is one-to-one.
Suppose $P_a(x_1) = P_a(x_2)$ where $x_1, x_2 \in G$.
Then, $ax_1 = ax_2$.
So, $a'ax_1 = a'a x_2$
Thus $x_1 = x_2$.
So, q_a is one-to-one.
Second we show that P_a is onto.
Let $b \in G$.
Then, $a'b \in G$ and
 $P_a(a'b) = aa'b = b$
Thus, P_a is onto.

$$\frac{pr \cdot of \circ f < laim;}{Lef \quad a,b \in G}.$$

$$Given \quad x \in G \quad we \quad have$$

$$\varphi_{ab}(x) = (ab)x = a(bx)$$

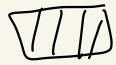
$$= \varphi_{a}(bx) = \varphi_{a}(\varphi_{b}(x))$$

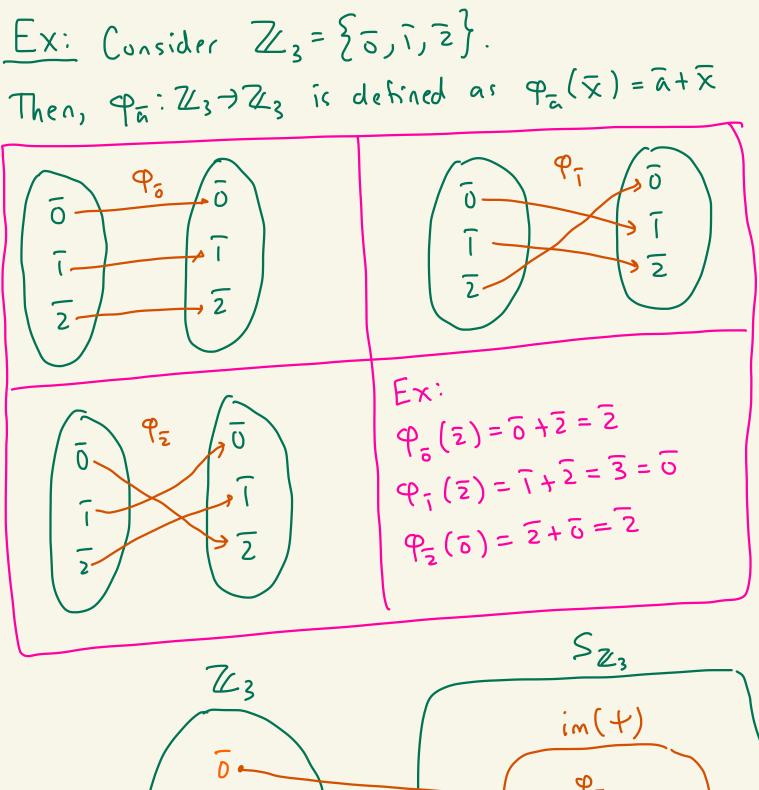
$$= (\varphi_{a}\varphi_{b})(x)$$

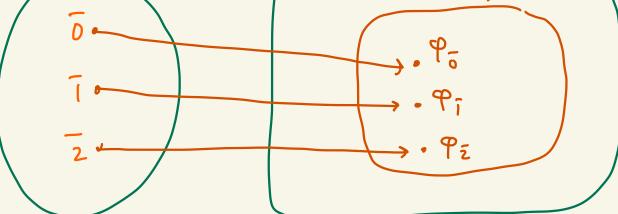
Thus,
$$P_{ab} = P_a P_b$$

Therefore, $\Psi(ab) = P_{ab} = Q_a P_b = \Psi(a) \Psi(b)$.

proof of claim:
Let
$$a, b \in G$$
.
Suppose $f(a) = f(b)$.
Then, $q_a = q_b$.
Let e be the identity of G .
Then,


$$a = ae = \varphi_a(e) = \varphi_b(e) = be = b$$


$$\varphi_a = \varphi_b$$
So, $a = b$.
Thus, f is one-to-one.


Summarizing the above we have that

$$4$$
 is an isomorphism between
 G and the subgroup $im(4) \leq S_G$.

